Analisis Komparatif Algoritma Klasifikasi untuk Prediksi Diabetes Menggunakan Pembelajaran Mesin
DOI:
https://doi.org/10.33557/zwrvpg71Keywords:
Machine Learning, Diabetes, Prediction, Classification, Model EvaluationAbstract
Diabetes is a chronic disease with an increasing global prevalence, posing a serious threat to public health. This study aims to compare the performance of three classification algorithms—Logistic Regression, Decision Tree, and Support Vector Machine (SVM)—in predicting diabetes risk using secondary data from Kaggle. A quantitative approach was used, with model performance evaluated based on accuracy. Results show that SVM achieved the highest accuracy at 74.46%, followed by Logistic Regression at 73.59%, and Decision Tree at 70.56%. SVM excels in handling high-dimensional data and variability, while Logistic Regression is easier to interpret. Although Decision Tree is intuitive and easy to visualize, it is more prone to overfitting. These findings suggest that SVM is the most suitable algorithm for data-driven diabetes prediction, supporting the development of early detection systems that are fast, efficient, and cost-effective.
Downloads
References
[1] World Health Organization, Diabetes. Geneva: WHO, 2023. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/diabetes
[2] Y. Fan et al., "Prospective study on the incidences of cardiovascular and renal diseases in young-onset type 2 diabetes," Diabetes Research and Clinical Practice, vol. 202, p. 110728, 2023. [Online]. Available: https://doi.org/10.1016/j.diabres.2023.110728.
[3] E. Y. F. Wan et al., "The impact of cardiovascular disease and chronic kidney disease on life expectancy and health service utilization: a cohort study of Hong Kong Chinese hypertensive patients," Journal of the American Society of Nephrology, vol. 30, no. 10, pp. 1991-1999, 2019. [Online]. Available: https://doi.org/10.1681/ASN.2018101037.
[4] Kementerian Kesehatan Republik Indonesia, InfoDATIN: Situasi Diabetes Mellitus di Indonesia. Jakarta: Pusat Data dan Informasi, Kemenkes RI, 2021. [Online]. Tersedia: https://pusdatin.kemkes.go.id/resources/download/pusdatin/infodatin/infodatin-diabetes-2021.pdf
[5] L. Salsabila, A. Y. Rindarwati, D. P. Destiani, dan P. A. Jamaica, “Upaya Peningkatan Kesadaran Masyarakat dan Deteksi Dini Diabetes Melitus Melalui Edukasi dan Skrining,” J. Pengemb. dan Pengabdi. Masy. Multikultural, vol. 2, no. 2, pp. 1–10, Aug. 2024. [Online]. Tersedia: https://journal.irpi.or.id/index.php/batik/article/view/1577
[6] Y. Zhao et al., "Early effective intervention can significantly reduce all-cause mortality and complications in prediabetic patients," Diabetes Research and Clinical Practice, vol. 202, p. 110728, 2023. [Online]. Available: https://doi.org/10.1016/j.diabres.2023.110728.
[7] M. Rahman et al., "Early detection of type 2 diabetes risk: limitations of current screening methods and the importance of early intervention," Frontiers in Endocrinology, vol. 14, p. 1260623, 2023. [Online]. Available: https://doi.org/10.3389/fendo.2023.1260623.
[8] J. Rizqi dan A. S. Fitriawan, “Pelatihan dan Pendampingan Kader Kesehatan Tentang Pengukuran Kadar Glukosa Darah Sebagai Upaya Deteksi Dini Diabetes Melitus,” J. Suaka Insan Mengabdi, vol. 2, no. 2, pp. 47–54, Jul. 2020. [Online]. Tersedia: https://journal.stikessuakainsan.ac.id/index.php/JSIM/article/view/191
[9] X. Fu et al., "Implementation of five machine learning methods to predict the 52-week blood glucose level in patients with type 2 diabetes," Front. Endocrinol., vol. 13, p. 1061507, 2023. [Online]. Available: https://doi.org/10.3389/fendo.2022.1061507
[10] E. Babaee et al., "Prediction of diabetes using data mining and machine learning methods," Healthcare Informatics Research, vol. 30, no. 1, pp. 1–13, 2024. [Online]. Available: https://doi.org/10.4258/hir.2024.30.1.1.
[11] U. Sujianto dan I. Riniatsih, “Peningkatan Pengetahuan dan Kesadaran Masyarakat Terhadap Deteksi Dini Penyakit Diabetes Melitus dan Hipertensi,” J. Pengabdian Perawat, vol. 1, no. 1, pp. 1–6, May 2022. [Online]. Tersedia: https://journal.ppnijateng.org/index.php/jpp/article/view/1513
[12] M. A. Siregar, A. R. Kaban, Y. A. Harahap, dan S. Lasmawanti, “Deteksi Dini dan Edukasi Pencegahan Diabetes Mellitus (DM) Pada Remaja Putri di SMP Swasta Amanah Tahfidz Qur’an Deli Serdang Untuk Peningkatan Produktivitas Remaja,” Jukeshum: J. Pengabdian Masyarakat, vol. 3, no. 2, pp. 1–7, 2023. [Online]. Tersedia: https://ojs.unhaj.ac.id/index.php/jukeshum/article/view/545
[13] M. Z. Siambaton, “Prediksi Penyakit Diabetes Mellitus Menggunakan Algoritma Klasifikasi Voting Feature Intervals 5,” REMIK: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 5, no. 1, pp. 149–158, Okt. 2020. [Online]. Tersedia: https://www.jurnal.polgan.ac.id/index.php/remik/article/view/10752
[14] N. Rahmansyah, S. A. Lusinia, dan I. Ilmawati, “Analisa Prediksi Penyakit Diabetes Menggunakan Metode Naive Bayes dan K-NN,” Innovative: Journal Of Social Science Research, vol. 5, no. 1, pp. 1–10, 2023. [Online]. Tersedia: https://j-innovative.org/index.php/Innovative/article/view/17737
[15] I. M. Karo Karo dan H. Hendriyana, “Klasifikasi Penderita Diabetes menggunakan Algoritma Machine Learning dan Z-Score,” Jurnal Teknologi Terpadu, vol. 8, no. 2, pp. 94–99, Des. 2022. [Online]. Tersedia: https://journal.nurulfikri.ac.id/index.php/jtt/article/view/564
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Matrik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Ilmiah Matrik byhttps://jit.binadarma.ac.id/journal/index.php/jurnalmatrik is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.